Previous Topic Back Forward Next Topic
Print Page Frank Dieterle
 
Ph. D. ThesisPh. D. Thesis AbstractAbstract Abstract in German (Zusammenfassung)Abstract in German (Zusammenfassung)
Home
News
About Me
Ph. D. Thesis
  Abstract
    Abstract in German (Zusammenfassung)
  Table of Contents
  1. Introduction
  2. Theory – Fundamentals of the Multivariate Data Analysis
  3. Theory – Quantification of the Refrigerants R22 and R134a: Part I
  4. Experiments, Setups and Data Sets
  5. Results – Kinetic Measurements
  6. Results – Multivariate Calibrations
  7. Results – Genetic Algorithm Framework
  8. Results – Growing Neural Network Framework
  9. Results – All Data Sets
  10. Results – Various Aspects of the Frameworks and Measurements
  11. Summary and Outlook
  12. References
  13. Acknowledgements
Publications
Research Tutorials
Downloads and Links
Contact
Search
Site Map
Print this Page Print this Page

Abstract in German - Zusammenfassung

Multi-Analyt Quantifizierungen mit Hilfe der Integration von künstlichen neuronalen Netzen, genetischen Algorithmen und der Chemometrie für zeitaufgelöste analytische Daten

Während des letzten Jahrzehnts haben Sensoren zur Detektion und Bestimmung von verschiedenen Substanzen nicht nur auf dem Gebiet der analytischen Chemie sondern auch im täglichen Leben rasend Verbreitung gefunden. Die meisten Sensorsysteme, wie zum Beispiel Abgasdetektoren für Automobile beruhen auf einzelnen Sensoren, welche möglichst spezifisch für den interessanten Analyten sind. Probleme auf Grund störender kreuzreaktiver Analyte und auf Grund eines Mangels an spezifischen Sensoren für viele Analyte führten zur Entwicklung so genannter Sensor-Arrays. Dabei können mehrere Analyte gleichzeitig quantifiziert werden, indem die Signalmuster von mehreren kreuzreaktiven Sensoren ausgewertet werden. Dieser Ansatz ist jedoch auch limitiert, da die Anzahl der Sensoren im Array größer als die Anzahl der kreuzreaktiven Analyte sein muss.

In dieser Arbeit wird ein neuer Ansatz präsentiert, welcher es erlaubt, Multi-Analyt Quantifizierungen mit einem Einsensor-System durchzuführen. Hierbei werden Unterschiede der Wechselwirkungskinetiken zwischen den Analyten und dem Sensor mit Hilfe von zeitaufgelösten Messungen und zeitaufgelösten Datenauswertungen ausgenutzt. Zusammen mit geeigneten Sensormaterialien kombiniert die zeitaufgelöste Auswertung das Prinzip der Sensoren mit dem Prinzip der Chromatographie, welche Analyte räumlich oder zeitlich trennt. Die wichtigsten Zielsetzungen dieser Arbeit können unter den zwei Hauptgesichtspunkten "Messprinzip" und die "Datenauswertung" gestellt werden.

Der erste Hauptgesichtspunkt ist die Einführung der zeitaufgelösten Messungen in die Sensorik. In dieser Arbeit basieren die zeitaufgelösten Messungen auf dem mikroporösen Polymer Makrolon als sensitive Sensorbeschichtung, welches eine kinetische Trennung der Analyte während der Sorption und der Desorption auf Grund der Analytgröße erlaubt. Es werden mit drei verschiedenen Einsensor-Aufbauten und vielen Mischungen der niederen Alkohole und der Kühlmittel R22 und R134a erfolgreich Mehrkomponentenanalysen erfolgreich durchgeführt.

Der zweite Hauptgesichtspunkt betrifft die multivariate Datenauswertung. Es wird gezeigt, dass eine höchstmögliche Scanrate der zeitaufgelösten Sensorantworten wünschenswert ist, was zu einer hohen Anzahl an Variablen führt. Es wird demonstriert, dass weit verbreitete Datenauswertungsmethoden nicht mit der großen Anzahl an Variablen und mit dem nichtlinearen Zusammenhang zwischen den Sensorsignalen und den Analytkonzentrationen zurechtkommen. Deshalb werden in dieser Arbeit drei verschiedene Algorithmen entwickelt und optimiert, um eine Kalibration mit der höchstmöglichen Generalisierung zu finden. Diese Algorithmen führen eine gleichzeitige Kalibrierung und Variablenselektion durch, wobei sie einen Datensatz, welcher in der Größe limitiert ist, bestmöglich ausnutzen. Ein Algorithmus basiert auf vielen parallelen Läufen von genetischen Algorithmen kombiniert mit neuronalen Netzen. Der zweite Algorithmus beruht auf vielen parallelen Läufen von wachsenden neuronalen Netzen, während der dritte Algorithmus mehrere wachsende neuronale Netze in einer Schleife benutzt. Alle drei Algorithmen zeigen eine bei weitem bessere Kalibration als gewöhnliche Methoden der multivariaten Kalibration und als einfache nicht optimierte neuronale Netze für alle Datensätze, welche untersucht wurden. Zusätzlich erlaubt die Variablenselektion einen Einblick in den Zusammenhang zwischen den zeitaufgelösten Sensorantworten und den Konzentrationen der verschiedenen Analyte. Außerdem schlägt die Variablenselektion Optimierungen bezüglich kürzerer Messungen für mehrere Datensätze vor. Alle drei Algorithmen meistern erfolgreich das Problem von zu vielen Variablen für zu wenige Proben und die Probleme, welche von den in den Daten vorhandenen Nichtlinearitäten verursacht werden. Dabei sind praktisch keine Eingaben des Benutzers nötig.

Zusammen liefern beide Hauptaspekte dieser Arbeit eine beeindruckende Demonstration, wie die Kombination eines fortschrittlichen Messprinzips mit einer intelligenten Datenauswertung die Ergebnisse von Messungen bei reduzierten Kosten für die Hardware verbessern kann. Dabei ist das Prinzip der Einsensor-Aufbauten beziehungsweise der Aufbauten mit wenigen Sensoren nicht auf ein größenselektives Erkennungsprinzip limitiert, sondern kann auf viele Prinzipien der Unterscheidung von Analyten wie zum Beispiel temperaturaufgelöste Messungen erweitert werden, was weiteren Untersuchungen ein nahezu endloses Feld eröffnet.

Page 26 © Frank Dieterle, 03.03.2019 Navigation